The idea is that the 'first' element of Pre Order is always a root, and then count its position in In Order, then root.left = InOrder s + 1, s+count/s+count+1, end...
Recursive call.
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
if(preorder == null || inorder == null || preorder.length != inorder.length || inorder.length == 0){
return null;
}
if(preorder.length == 1){
return new TreeNode(preorder[0]);
}
return buildTreeOps(preorder, inorder, 0, preorder.length - 1, 0, inorder.length - 1);
}
private TreeNode buildTreeOps(int[] preorder, int[] inorder, int preS, int preE, int inS, int inE){
if(preS > preE || inS > inE || preE > preorder.length || inE > inorder.length || (preE - preS) != (inE - inS)){
return null;
}
if(preS == preE && inS == inE){
return new TreeNode(inorder[inS]);
}
TreeNode node = new TreeNode(preorder[preS]);
int count = 0;
for(int i = 0; i <= (inE - inS); i++){
if(inorder[i + inS] == preorder[preS]){
count = i;
}
}
node.left = buildTreeOps(preorder, inorder, preS + 1, preS + count, inS, inS + count - 1);
node.right = buildTreeOps(preorder, inorder, preS + 1 + count, preE, inS + count + 1, inE);
return node;
}
}
没有评论:
发表评论